
On Information Conservation and Algorithmic
Complexity

Pieter Adriaans1, Amos Golan2

1 ILLC, IvI, FNWI
University of Amsterdam,

Science Park 107
1098 XG Amsterdam,

The Netherlands
2 Info-Metrics Institute

American University, 4400 Massachusetts Avenue, NW
Washington, DC 20016-8029

P.W.Adriaans@uva.nl, agolan@american.edu

Abstract. In this paper we investigate standard prefix-free Kolmogorov
complexity in the context of Zellner’s information conservation principle
(ICP). We show that prefix-free Kolmogorov complexity K is not effi-
cient in this sense. We introduce Information Conserving Algorithmic
complexity K∗, defined on a kernel space of random strings. We prove
that this version is efficient in a weak sense. We prove that universal
Turing machines do not conserve information in a strong sense, but we
conjecture the existence of at least one such machine U. Because K∗

conserves information, the prefix-free aspect of the program code can be
ignored as an internal aspect of the representation. This leads to a vari-
ant of the universal distribution m∗ using a uniform density estimator
ξU for the distribution of the random strings. This distribution is shown
to be smoother than the standard Solomonoff distribution. Of course ξU
is unknown, but since it ’absorbs’ our uncertainty about the distribution
m∗ uniformly, it leads to a theory that can be applied to small data sets
without the intervention of a O(1) factor.

keywords: Kolmogorov Complexity, Zellner’s Information Conservation Princi-
ple, Universal Distribution

1 Introduction

1.1 Some simple examples

Two well known information measures are: Shannon Information, I(x) = − log px,
and Kolmogorov complexity I(x) is the length of the shortest program p that
produces x on a computer. Of these two Shannon is purely extensive: if we
combine two mutually independent messages x and y in to a new message we
have I(x+ y) = − log px − log py. Kolmogorov complexity gives more problems.

The shortest program for the string x = 111111111111111111111111111111 is
something like ”for i=1 to 30 print:1” which has 20 characters. The string
y = 11111111111111111111 still has the same complexity in this approximation
”for i=1 to 20 print:1”. Even the concatenation of x and y has this ap-
proximated complexity: ”for i=1 to 50 print:1”. Thus we have the counter
intuitive I(x) = I(y) = I(x ⊗ y), where ⊗ is the concatenation sign. We get
no new information when we concatenate x to y. This is partly due to the
fact that the strings are not independent, but even for independent strings
we have counterintuitive effects. Let a = 00111110101 and b = 110010 be
independent random strings and let c = a ⊗ b. The shortest programs are
”print:00111110101110010”, ”print:00111110101” and ”print:110010”. Here
we have I(a ⊗ b) < I(a) + I(b). On the other hand take the string: f =
0001100011000110001100011 which is 25 characters long. The shortest program
is ”i=1 to 5 print:00011”, which is 20 characters long. so this is an effective
compression. Now form f ′ by removing one bit from the end. Now the shortest
program becomes:

”i=1 to 4 print:00011;print:0001”

This program has 31 characters which is longer then f ′, making f ′ effectively
a random string. The fact that we can transform a substantially compressible
string in to a random one by removing one bit is quite striking. Of course these
effects are largely dependent on the programming language of choice. These
observations motivate the following research question: is it possible to develop
a variant of Kolmogorov complexity that has the same efficiency as Shannon
information and, if not, how close can we get?

1.2 Zellner’s information conservation principle and algorithmic
complexity

Zellner ([13], [14]) showed that Bayes’ rule is efficient in the sense that the
amount of input information equals the amount of output information. [4] showed
that the maximum entropy principle and the general maximum entropy principle
are both 100% efficient. Applying Shannon’s criterion for optimal code length
I(x) = − logP(x) to Bayes’ rule we derive:

P(x|y) =
P(x)P(y|x)

P(y)

− log(P(x|y)) = − log(
P(x)P(y|x)

P(y)
)

log(P(y)) + log(P(x|y)) = log(P(x)) + log(P(y|x))

I(y) + I(x|y) = I(x) + I(y|x)

When we use Bayes’ rule or the maximum entropy principle, we do not create
or lose information in the process of reasoning. Clearly this is a desirable quality.

When we replace Shannon information with Kolmogorov complexity and in-
terpret the expression I(x) as the shortest program that produces the string x
on a universal Turing machine U this information efficiency is lost. Strings in-
terpreted as programs differ considerably from probabilities. The class of valid
programs is not closed under concatenation, so it is not possible to define infor-
mation efficiency directly. The standard solution in Kolmogorov complexity is
to define a variant that only accepts programs in prefix-free format. This gives
not only the benefit of well-defined concatenation of programs, but, via Kraft’s
inequality, also guarantees the existence of a probability distribution over the
set of programs. In this way a universal distribution m for binary strings can be
defined. For an extensive discussion of these issues we refer to [11]. Still there
are problems with this approach:

– The prefix-free variant of Kolmogorov complexity is not efficient.
– Kraft’s inequality is very unrestrictive. Any prefix-free code will do: there

is no guarantee that the resulting probability distribution is scientifically
useful. It may favor some classes of strings over others without any clear
motivation. In fact there is no guarantee that a prefix-free code per se is a
good solution for the construction of a universal distribution if we want our
result to have any bearing on relatively small binary objects.

There is a third point that is relevant in this context. Zellner’s criterion spec-
ifies a relation between input and output information. This implies an inherent
typing issue that is not well recognized in the literature on Kolmogorov complex-
ity. Let x∗ be the shortest program that generates x on U such that U(x∗) = x.
In this relation x∗ is a program, i.e. input, and x is output. x∗ is by definition
also uncompressible and thus random. But the shortest program that produces
x∗ as output is something like U(print : ”x∗”) = x∗. In this context x∗ is output
and ”x∗” is the name of the object. Note that al this implies that the expression
print : ”x∗” is a random string, although it looks quite regular.

In the following we start by defining efficient information spaces. We show
that standard prefix-free Kolmogorov complexity K is not efficient. We describe
the concept of Information Conserving Algorithmic complexity K∗ and prove
that it is efficient in a weak sense. We prove that universal Turing machines do
not conserve information in a strong sense, but we conjecture the existence of
at least one such machine U.

1.3 Efficient Information Spaces

Following Zellner, we define the notion of an efficient information space that sat-
isfies the Information Conservation Principle (ICP). Suppose we have a countable
set I with a general information function I : I → R+ that assigns a positive
real number to every element in I. Such a set is called an Efficient Information
Space if there exists a Conditional Information Operation I(x|y) for which the
following conservation law holds for all x, y ∈ I:

I(y) + I(x|y) = I(x) + I(y|x) (1)

We call such a space efficient because we can always interpret conditional infor-
mation to be associated with Bayesian probabilities, as was shown in the previous
paragraph. In some cases it is useful to assume the existence of a bottom element
⊥ and/or a top element >. If a space has a bottom ⊥ element as well as a top
> element it is closed. No element contains any conditional information with
respect to the top or itself:

I(x|>) = I(⊥|x) = I(x|x) = I(⊥) = 0 (2)

A space without a top element is open. A closed information space is finite if:

I(>) = r (3)

where r is a real number. The bottom never contains conditional information:

I(x|⊥) = I(x) (4)

The main results in this paper are independent of those requirements.

Definition 1. For any two elements H,D ∈ I we say that H is a hypothesis
for D if:

1. I(H|D) = 0 i.e. I(H) + I(D|H) = I(D), the hypothesis can not be rejected
based on the information in D.

2. I(H) = I(D) − I(D|H) > 0, it contains information that is not supported
by D.

These principles are not very restrictive. Very simple spaces already observe ICP
in this sense:

Example 1. Let I be a powerset P of a countable set U , ⊥ = ∅, > = U , I(X) =
|X| is the cardinality of X and I(X|Y) = X − Y , i.e. the set of elements of X
that are not contained in Y . We have: I(Y) + I(X|Y) = I(X) + I(Y |X) which
is |Y | + |X − Y | = |X| + |Y − X|. This is clearly efficient. This corresponds
to a uniform distribution over U . Since the space is efficient, we can, when we
know the distribution, reconstruct any unknown subset of U on the basis of its
conditional information with other sets.

Example 2. Let I = {0, 1}∗ be the set of binary strings (i.e. a free monoid
with concatenation), ⊥ = ε, there is no top, I(x) = |x| is the length of x,
I(x|y) = {|a| : (x = ab, y = bc) ∨ (y = cb, x = ba)} i.e. the length of x after
subtracting a suffix or prefix that overlaps with y. Clearly we have: I(Y) +
I(X|Y) = I(X)+I(Y |X). The corresponding distribution is P(x) = 2−|x|. Since
the space is efficient, we can, when we know the distribution, reconstruct any
unknown string on the basis of its conditional information with other strings.

This shows the use of efficient information spaces. In these systems we are
certain that the probability distributions represent the information and vice
versa.

2 Prefix-free Kolmogorov complexity

K is the prefix-free Kolmogorov complexity of a binary string. It is defined as:

Definition 2. K(x|y) = mini{|i| : U(iy) = x}

i.e. the shortest self-delimiting index of a Turing machine Ti that produces x
on input y, where i ∈ {1, 2, ...} and y ∈ {0, 1}∗. Here |i| is the length of a
self-delimiting code of an index and U is a universal Turing machine that runs
program y after interpreting i. The length of |i| is limited for practical purposes
by n+2 log n+1, where n = |i|. The reason to use i lies in the fact that it allows
us to separate the concatenation ip into its constituent parts, i and p. Here i
is the index of a Turing machine which can be seen as capturing the regular
(structural [12], meaningful [1], model [6], effective [9]) part of the string x, and
p describes the input for the machine, i.e. the irregular part, e.g. errors in the
model, noise and other missing information. We define:

Definition 3. K(x) = K(x|ε)

Where ε is the empty string. This is in fact a one-part code optimization variant
K1 of Kolmogorov complexity that forces all complexity of the information to be
stored in the index of the Turing machine. Sometimes it is useful to distinguish
a two-part code optimization variant:

Definition 4. K2(x) = mini,p{|i|+ |p| : U(ip) = x}

This version balances the information over an index i and a program p for x.

2.1 Prefix-free Kolmogorov complexity does not define an efficient
Information space

It is obvious that prefix-free Kolmogorov complexity does conserve information
in a weak sense. When we have x and we have an optimal p such that U(px) =
y then we can compute y and use this to define (although not compute) an
optimal q such that U(qy) = x. Since this relation is symmetrical we always
have K(y)+K(x|y) = K(x)+K(y|x). Here we show that prefix-free Kolmogorov
complexity can never conserve information efficiently.

Suppose that we have the following definitions:

I = {0, 1}∗ (5)

∀x, y ∈ I : I(x) = K(x), I(x|y) = K(x|y) (6)

Lemma 1. Prefix-free Kolmogorov complexity does not conserve information
efficiently.

Proof: Suppose that the conservation law 1 holds:

K(y) +K(x|y) = K(x) +K(y|x)

Then we have:
K(y|ε) +K(x|y) = K(x|ε) +K(y|x)

min
i
{|i| : U(iε) = y}+ min

j
{|j| : U(jy) = x}

=

min
k
{|k| : U(kε) = y}+ min

l
{|l| : U(lx) = y}

which implies for some optimal i, j, k and l:

(|i|+ 2 log |i|) + (|j|+ 2 log |j|) = (|k|+ 2 log |k|) + (|l|+ 2 log |l|)

This equation has no general solution, unless |i| = |k| or |i| = |l| and this is
obviously too restrictive to satisfy ICP. �

This seems counter-intuitive. After all Kolmogorov complexity is an informa-
tion measure. The expression K(y) +K(x|y) = K(x) +K(y|x) can be read from
left to right as: when we have the code for y and the code for x-given-y, then we
can construct x, and from that we must be able to construct y-given-x. This is
even more embarrassing, when one takes into account that the prefix-free version
was introduced to allow for the definition of a universal probability distribution
via Kraft’s inequality. The downside of this solution apparently is that ICP is
violated. One might object that K only introduces exponentially small errors
that in most computations have minor consequences. The fact remains, that K
is an information measure with the undesirable quality that it produces infor-
mation when we use it. This additional information proliferates uncontrollably
in our computations and this makes K virtually useless when analyzing small
data sets.

2.2 Information Conserving Algorithmic Complexity

Kolmogorov complexity is non-constructive. It can be approximated by means of
dovetailing computations on a universal Turing machine [11]. So let’s make this
presupposition explicit: it might help to understand the internals of the concept
of information conserving algorithmic complexity, when we suppose that we have
access to a demon with infinite computational power in a black box. This demon
performs calculations of infinite length without showing us the result, but uses
them internally. One such thing this demon could do is calculate the optimal
representation for a binary object before using it. This allows us to restrict the
input of the computations to a kernel domain of random strings.

Definition 5. Let x be a binary string and let

U : {0, 1}∗ × {0, 1}∗ → {0, 1}∗

be a universal Turing machine. The optimal code for x is the shortest code that
generates x on U :

x∗ = min
i
{|i| : U(iε) = x}

Note that x∗ is a random string and that it is defined independently from any
notion of Kolmogorov complexity. If x is random then x is its own optimal code:
x = x∗. We define the kernel set of random binary strings with respect to U :

Definition 6.

RANDOMU = {x|x ∈ {1, 0}∗, x =U x∗}

We can restrict the domain of U to this set:

U∗ : RANDOMU × RANDOMU → {0, 1}∗

Note that, since all binary objects have an optimally compressed representation
this does not restrict the expressiveness of U . This kernel is the basis for the
Information Conserving Algorithmic complexity:

Definition 7. The Information Conserving Algorithmic Complexity

K∗ : {0, 1}∗ × {0, 1}∗ → N+

of a string x conditional to a string y with respect to a restricted general Turing
machine U∗ is defined as:

K∗U (x|y) = min
i
{|i| : U∗(iy∗) = x}

Here N+ indicates the set of positive natural numbers. When possible we will
leave the subscript for U out. Again, non-conditional complexity is defined as:

Definition 8. K∗(x) = K∗(x|ε)

The information conserving algorithmic complexity differs at two points from
the standard prefix-free Kolmogorov complexity:

– It uses the self-delimiting code i internally but reports |i| to the outside
world. Thus we lose the possibility of defining a probability distribution via
Kraft’s inequality.

– It uses the optimal code y∗ instead of y itself. All inputs from the domain
{0, 1}∗ are compressed to corresponding elements RANDOMU

Definition 9. y†x is the optimal code that outputs y given x. We have K∗(y|x) =
|y † x|

Lemma 2. K∗(x † y|y, x) = 0

Proof: x † y is defined given x and y, although it is uncomputable. It can be
approximated from below. �

Theorem 1. Information Conserving Algorithmic complexity does conserve in-
formation in the weak sense efficiently.

Proof: Suppose that the conservation law 1 holds:

K∗(y) +K∗(x|y) = K∗(x) +K∗(y|x)

Then we have:
K∗(y|ε) +K∗(x|y) = K∗(x|ε) +K∗(y|x)

min
i
{|i| : U(iε) = y}+ min

j
{|j| : U(jy∗) = x}

=

min
k
{|k| : U(kε) = y}+ min

l
{|l| : U(lx∗) = y}

|y∗|+ min
j
{|j| : U(jy∗) = x} = |x∗|+ min

l
{|l| : U(lx∗) = y}

which implies for the optimal codes j and l:

|y∗|+ |j| = |x∗|+ |l|

Now take j = x † y and l = y † x. This satisfies ICP, but we have to prove that
this equality really is full-filled. I do this for one half of the equality: Given y∗

and x † y, x∗ can be computed. Given x∗ and y∗ is y † x defined according to
lemma 2. �

This proof shows that the conservation law explains the conceptual rela-
tion between input and output of computational processes and conditional in-
formation. Given the strings x and y we have two ways to specify the exact
amount of information in the combination of the two: K∗(x) + K∗(y † x) and
K∗(y) +K∗(x † y). Given an infinite amount of time we can always reconstruct
one representation out of the other. This is the weak algorithmic interpretation
of ICP. To see how this works in practice lets look at an example:

Example 3. Let x and y be two large, and thus highly compressible factorials.
Their optimal code is pfx and pfy, where p is the factorial program and fx and
fy are indexes. So we have:

|pfy|+ min
j
{|j| : U(jpfy) = x} = |pfx|+ min

l
{|l| : U(lpfx) = y}

Given the structure of x and y it is clear that j = x†y = qfx and l = y †x = qfy,
where q is a program that instructs U to first read a chunk of data and then a
program and forget about the rest, such that: U(qfxpfy) = x and U(qfypfx) = y.
Thus we have:

|pfy|+ |qfx| = |pfx|+ |qfy|

A next question to ask is whether we can also prove efficient conservation of
information in the strong sense. The following lemma shows that this is not the
case:

Lemma 3. Universal Turing machines do not conserve information efficiently
in the strong sense.

Proof: Suppose we have a universal Turing machine U for which |y∗|+ |x † y| =
|x∗|+ |y † x|. Now define a new universal Turing machine U ′ that can call |x † y|
as a subroutine with an s such that |s| < |x † y| and U(sy) = x. This causes U ′

to violate ICP. �

This observation is a more general variant of the so-called nickname problem
([9], [8], [2]). Obviously an information conserving universal machine would be
a nice theoretical tool but we have not been able to prove or disprove that it
exists, so we formulate the conjecture:

Conjecture 1. A completely efficient information conserving universal Turing
machine U exists.

The machine U would define completely transparent exchange between data
and programs. An optimal computational description x∗ of x would also define
a semantics for x.

In the following we suppose that PREFIX is an infinite set of prefix-free strings.
The shift from prefix-free to information conserving algorithmic complexity has
some interesting consequences.

– In prefix-free Kolmogorov complexity the universal machine

U : PREFIX× {1, 0}∗ → {1, 0}∗

is defined on heterogeneous domains: the indexes are prefix-free strings, the
programs arbitrary strings. The range is the full set of strings. In information
conserving algorithmic complexity the universal machine

U∗ : RANDOMU × RANDOMU → {1, 0}∗

is defined on homogeneous domains of random strings. The range again is
the full set of strings.

– In information conserving algorithmic complexity, all inputs have maximal
entropy. In principle the index and the program can be interchanged. Thus
K∗ can be seen as running on the kernel of programs RANDOMU .

3 Discussion

K∗ improves K in two fundamental ways:

– It uses an infinite search process to determine the information in the defini-
tion of the Turing machine and maps this information onto the set of random
strings. In this way we can be sure that accidental compressibility of the in-
dexes does not affect our measurement of the complexity. This in contrast
with K that uses the recursive function of the universal Turing machine to
’parse’ the indexes and will mistakenly interpret many compressible objects
for random strings.

– It does not use the prefix-free representation of K, which implies that in-
dexes for the same information are in general shorter, and that an index
for i can never be longer than log i. Although the prefix free programs en-
sure convergence to distribution m, it is merely a practical solution without
any inherent motivation. It adds an additional structure to the complexity
measure that in most cases is inconsistent with the phenomena we try to ex-
plain. The self-delimiting code that is usually adopted to make the programs
prefix-free particularly affects complexity measurements of small sets.

3.1 The universal distribution m∗ associated with K∗

Note that all elements in RANDOMU have maximal entropy. This gives them a
natural probability when interpreted as sequences of messages:

∀x ∈ RANDOMU : P(x) = 2−|x|

When x ∈ {1, 0}∗ then our estimate for the probability of x is given by the:

Definition 10. The information conserving universal distribution: m∗(x) =
2−(1+ξU)K∗(x)

where 0 < ξU < 1 is a factor that ensures convergence as well as conserva-
tion of information (ICP). Note that, since the density of compressible strings
is zero in the limit, definition 10 does not converge if ξU = 0. It can be inter-
preted as containing information about the density distribution of RANDOMU in
{1, 0}∗ with respect to U . When we compare the information conserving uni-
versal distribution with the standard Solomonoff distribution m that is specified
via Levin’s coding theorem − logm(x) = K(x) +O(1) ([11]) we observe that for
any 0 < ξU < 1 and for any random string x of size large enough:

K(x) +O(1) = |x|+ 2 log x+O(1) < (1 + ξU)|x| = (1 + ξU)K∗(x)

Thus m dominates m∗ on all but a finite number of points.

3.2 Influence of the computational power of U

Suppose we analyze the complexity of factorials. We have two universal Turing
machines at our disposal: U! contains a software routine fac with fac∗ = k that
implements factorials x! and U does not. Let n = x! be a factorial number and
let l = ”x!” be the code length of the program x!: the computation in U is
described by: U(fac”x!”) = n which according to

K2(x) = min
i,p
{|i|+ |p| : U(ip) = x}

gives KU
2 (n) = k+l. By the same reasoning we have the computation U(εx!) = n

for U! which gives: KU!
2 = l+ 1. In other words U needs code that is an additive

factor k longer than U! to code factorials. This implies that U will not recognize

factorials of size k + l < log n as such, while U! already starts to compress
factorials at l+1 < log n. Generalizing this insight we can observe that increasing
the computational power of a universal Turing machine results in the reduction
of the frequency of random strings in the initial segment of the set of binary
strings and consequently in the resulting universal distribution. This is in line
with ideas of Solomonoff where the cumulative learning experience is interpreted
as a process of incremental update of the universal distribution [10]. Note that if
conjecture 1 is true there would exist a completely efficient universal distribution
m that codes all possible mathematical knowledge as efficiently as possible. This
would be the potential holy grail of any learning effort.

4 Conclusion

This last observation shows that the ξU used in the definition of m∗ deserves
further study. Does it have an asymptotic universal value? What is the quan-
titative effect of an update of U? Another question that deserves further study
is the interpretation of a kernel of random strings as an information conserving
lattice.

Out research question at the start of this paper was: is it possible to develop
a variant of Kolmogorov complexity that has the same efficiency as Shannon
information and, if not, how close can we get? The preliminary answers are:

– We can define a variant of Kolmogorov complexity that conserves informa-
tion efficiently in the weak sense.

– Universal Turing machines do not conserve information efficiently in the
strong sense.

– We conjecture the existence of at least one universal Turing machine that
does conserve information efficiently in the strong sense.

Apart from the fact that efficient information processing is in itself desir-
able, the theoretical constructions presented here give us a better perspective to
map concepts of Kolmogorov complexity to other information processing rules
(conditional entropies, mutual information).

An example: suppose we want to compare two objects x and y, and we
know that they are different but contain the same amount of information. We
have m(x) = 2−K(x)+O(1) and m∗(x) = 2−(1+ξU)K∗(x). The O(1) term in the
equation for m has no sensible interpretation apart from being a factor that
regulates the ’resolution’ of our theory. It is not even sure that the factor will
be the same for y and x giving K(x) = K(y) + O(1) as our best guess. On
the other hand the term ξU in m∗ has a sensible interpretation, which gives
m∗(x) = m∗(y) = 2−(1+ξU)K∗(x) even if the value of ξU is unknown. This implies
thatK∗ can be applied to small data sets even though it is essentially asymptotic.

5 Acknowledgements

This research was partly supported by the Info-Metrics Institute of the American
University in Washington, the Commit project and the ILLC and IvI of the

University of Amsterdam and a Templeton Foundations Science and Significance
of Complexity Grant supporting The Atlas of Complexity Project.

Bibliography

[1] Adriaans , P.W. , (2009) Between Order and Chaos: The Quest for Mean-
ingful Information, Theory of Computing Systems, Volume 45 , Issue 4 (July
2009), Special Issue: Computation and Logic in the Real World; Guest Edi-
tors: S. Barry Cooper, Elvira Mayordomo and Andrea Sorbi, 650-674.

[2] Adriaans, P.W. (2012) Facticity as the amount of self-descriptive information
in a data set, http://arxiv.org/abs/1203.2245.

[3] Cover T.M. and Thomas, J.A. (2006), Elements of Information theory, Wiley.
[4] A. Golan (2008) Information and Entropy Econometrics - a Review and Syn-

thesis Volume 2, Foundations and Trends in Econometrics, Now Publishers
Inc.

[5] Golan, A. George G. Judge, Douglas Miller (1996) Maximum entropy econo-
metrics: robust estimation with limited data, Volume 16, Series in financial
economics and quantitative analysis, Wiley.

[6] Grünwald, P.D. (2007), The Minimum Description Length Principle. MIT
Press.

[7] Hopcroft, J. E., Motwani, R., Ullman, J. D. (2001), Introduction to Automata
Theory, Languages, and Computation Second Edition. Addison-Wesley.

[8] Foley, D.K. (2010) Notes on Bayesian inference and effective complexity,
unpublished manuscript.

[9] Gell-Mann M. and S. Lloyd (2003) Effective complexity. In Murray Gell-
Mann and Constantino Tsallis, eds.

[10] Solomonoff, R.J. (1997), The Discovery of Algorithmic Probability, Journal
of Computer and System Sciences, vol. 55, nr. 1, 73-88.

[11] Li M., Vitányi P.M.B. (2008), An Introduction to Kolmogorov Complexity
and Its Applications, 3rd ed., Springer-Verlag, New York.

[12] Vereshchagin, N.K.Vitányi P.M.B. (2004) Kolmogorov’s structure functions
and model selection, IEEE Transactions on Information Theory, vol. 50, nr.
12, 3265–3290.

[13] Zellner, A. (1988), Optimal information processing and Bayes’ theorem,
American Statistician 42, 278-284.

[14] Zellner, A. (2002), Information processing and Bayesian analysis, Journal
of Econometrics 107, 41-50.

