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ien
e.uva.nlAbstra
t. The notion of meaningful information seems to be asso
iatedwith the sweet spot between order and 
haos. This form of meaningful-ness of information, whi
h is primarily what s
ien
e is interested in, isnot 
aptured by both Shannon information and Kolmogorov 
omplex-ity. In this paper I develop a theoreti
al framework that 
an be seenas a �rst approximation to a study of meaningful information. In this
ontext I introdu
e the notion of fa
ti
ity of a data set. I dis
uss therelation between thermodynami
s and algorithmi
 
omplexity theory inthe 
ontext of this problem. I prove that under adequate measurement
onditions the free energy of a system in the world is asso
iated withthe randomness de�
ien
y of a data set with observations about thissystem. These insights suggest an explanation of the eÆ
ien
y of humanintelligen
e in terms of helpful distributions. Finally I give a 
riti
al dis-
ussion of S
hmidhuber's views spe
i�
ally his notion of low 
omplexityart, I defend the view that artists optimize fa
ti
ity instead. I suggestpossibilities for empiri
al falsi�
ation of my views.keywords: meaningful information, learning as 
ompression, MDL, two-part 
odeoptimization, randomness de�
ien
y, thermodynami
s, free energy, algorithmi
estheti
s.1 Introdu
tion: Learning, 
ompression and meaningfulinformationSin
e pre-so
rati
 philosophy there has been a tension between a des
ription ofthe world as a dynami
 pro
ess (Hera
litus) or as a stati
 stru
ture (Parmenides.Plato's theory of ideas explains the 
haoti
 
omplexity of the world around usin terms of an imperfe
t re
e
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know and understand the world be
ause our mind parti
ipates in this world ofideas. Learning to understand the world is in fa
t a kind of remembering whatone already knows. Later philosophers like William of O

am threw the worldof ideas in the dustbin ("entia non sunt multipli
ands praetor ne
essitated", or"entities should not be multiplied beyond ne
essity") in favor of the nominalisti
view that our des
riptions of the world should be as simple as possible. Thisprin
iple, often referred to as O

am's razor (to 
ut o� Plato's beard of ideas),has had a de
isive in
uen
e in the history of s
ien
e. In modern methodologyof s
ien
e this notion is studied under various guises: O

am's razor [14℄, theminimal des
ription length (MDL) prin
iple [6; 16℄, two-part-
ode optimization[30℄, learning as data 
ompression [32℄ et
. All these approa
hes are indebtedto the formulation of an algorithmi
 solution to the problem of indu
tion bySolomono� [29℄, Chaitin [7℄ and Kolmogorov [31℄, whi
h is one of the greatera
hievements of s
ien
e in the 20th 
entury.In its modern guise this resear
h often goes hand in hand with a 
omputation-alisti
 
on
eption of the human mind as a kind of general problem solver. This
on
eption 
an, via the in
uen
e of Carnap, also be tra
ed ba
k to the empiri
istpsy
hology of the mind of Lo
ke and Hume [20; 18℄. Solomono�'s solution to theindu
tion problem is asso
iated with the 
on
ept of Kolmogorov 
omplexity asa measure of the amount of information in a binary obje
t. Roughly the Kol-mogorov 
omplexity of a binary string is the length of the shortest pre�x-freeprogram that 
omputes this obje
t on a universal Turing ma
hine. This insightallows us to formulate the notion of a universal distribution that assigns an a-priori probability to an obje
t that is inversely logarithmi
 in its Kolmogorov
omplexity. Espe
ially Solomono�, who was the �rst to formulate the idea of auniversal distribution, seems to have been driven by an ambition to solve thegeneral problem of mathemati
al indu
tion on one hand and formulate a generaltheory of optimal human learning based on evolution on the other: My general
on
lusion was that Bayes' theorem was likely to be the key. That a person wasborn with a reasonably good builtin a priori probability distribution. The per-son would then make predi
tions and de
isions based on this distribution. Thedistribution was then modi�ed by their life experien
e. The initial "Builtin"distribution was obtained by organi
 evolution. There was a strong sele
tion infavor of organisms that made de
isions on the basis of "good" a priori probabil-ity distributions. The organisms making poor de
isions would tend to have fewerdes
endants. [29℄ This resear
h program seems to be the driving for
e behindthe work of resear
hers like S
hmidhuber [27℄ and Hutter [19℄. For a dis
ussionof 
ompressibility as a general 
ognitive prin
iple see [8℄.O

am's razor has been questioned throughout history with �er
e opponents(e.g. [14℄) and strong defenders (e.g. [32℄). Until re
ently the view of learning asalgorithmi
 data 
ompression did not seem to have mu
h pra
ti
al value. Lotsof learning algorithms in fa
t perform some kind of data 
ompression, but thiswas not a guiding prin
iple of their design [23; 12℄. Two developments in the last�ve years have 
hanged this perspe
tive quite fundamentally : 1) a better un-derstanding of the mathemati
s behind 
ompression, spe
i�
ally Kolmogorovs



stru
ture fun
tion [30; 31℄ and 2) the appli
ation of existing implementationsof 
ompression algorithms to approximate the ideal (and un
omputable) Kol-mogorov 
omplexity as pioneered by Cilibrasi and Vit�anyi [9; 10℄.1.1 A thermodynami
 interpretation of Solomono�'s programAt this moment we have not only a mu
h better understanding of the theoreti
alissues behind data 
ompression. It has also be
ome 
lear that MDL as a universalindu
tive methodology has 
aws. Gr�unwald and Langford have identi�ed 
ondi-tions under whi
h MDL behaves suboptimal [16℄. Adriaans and Vitanyi showedthat, although an optimal 
ompression of a data set produ
es in a 
ertain sensean optimal theory, this does not imply that in
remental 
ompression of datasets, su
h as most learning algorithms perform, is a generally valid strategy [4℄.The quality of our predi
itive models may vary inde�nitely with ea
h in
remen-tal 
ompression step we make. Be
ause of the un
omputatibility of the optimal
ompression we 
an never be sure to have rea
hed a good theory in any �nitetime. In a purely algorithmi
 universe MDL a
tually would not be a very goodstrategy. The fa
t that bounded resour
e data 
ompression 'works' in our uni-verse has to do with its spe
i�
 physi
al stru
ture. Consequently there 
an notbe a pure algorithmi
 explanation of the validity MDL. The extremely eÆ
ientdata 
ompression that the human mind is able to perform seems to be drivenby bias that are not purely mathemati
al. In this 
ontext the 'built-in' a prioridistribution that was referred to in the 
itation of Solomono� above 
ould beupdated in our theoreti
al models along the following lines: "We are intelligentagents that have evolved via a pro
ess of evolution in a universe that has thefollowing stru
ture:1. It is spatio temporal.2. It is subje
t to elementary physi
al laws. In parti
ular it obeys the laws ofthermodynami
s. It has an irreversible arrow of time that is asso
iated witha 
ontinuous in
rease in entropy.3. It supports the spontaneous emergen
e of universal 
omputational pro
esses[33℄. Sin
e the 
apa
ity to store information presupposes the existen
e ofreversible pro
esses (bit-
ips) and sin
e re
ursive fun
tions dis
ard informa-tion this implies that it 
ontains systems that 
an sustain thermodynami
non-equilibrium states during a 
ertain time.4. It supports various fun
tions for the distribution of information throughspa
e: light (vision), me
hani
al intera
tion (tou
h, hearing) and 
hemi
alintera
tion (smell, taste). These information distribution fun
tions a
t as'lossy' homomorphisms that only 
onvey partial information. In general theinformation de
ays at least polynomially with the distan
e in spa
e.In the 
ontext of evolution we may expe
t our sensory organs and generalproblem solving 
apabilities to be optimized for these 
onditions. In parti
ularone would expe
t agents emerging in these 
onditions to have advan
ed 
apabili-ties to evaluate spatial variations in entropy. Sin
e systems in
rease their entropy



over time, pla
es with low entropy are naturally 'interesting' and may 
reate lifesustaining 
onditions. Also the fa
t that su
h agents 
ould emerge in an evolu-tionary pro
ess presupposes the environment to be benign in the following sense:the lossy information distribution fun
tions 
onvey enough information to sur-vive. This implies that dete
tion of entropy variations that are preserved underlossy 
ompression (i.e. general dete
tion of density variations) is suÆ
ient forsurvival.1This thermodynami
 variant of Solomono�'s program moves us away from amore radi
al interpretation of his work implying a 
omputationalisti
 view of theworld, i.e. the metaphysi
al theory that the world essentially is a 
omputationalpro
ess and that the human mind is a universal 
omputer. The 
onne
tion isas follows: the appli
ation of the universal distribution to a data set seems toimply that we regard this data set as the result of a 
omputational pro
ess. Ifwe interpret the human mind as a general problem solving devi
e that is the re-sult of an evolutionary pro
ess then it is natural to suppose that it is optimizedfor data sets that are produ
ed by 
omputational pro
esses, i.e. it evolved in aworld that is itself 
omputational. Computationalisti
 ideas have been defendedby a variety of authors like Wolfram [33℄, S
hmidhuber, Lloyd [22℄, Floridi andZuse: "The entire universe is being 
omputed on a 
omputer, possibly a 
ellularautomaton."2 It is 
lear that this form of 
omputationalism is a purely meta-physi
al position whi
h 
an not be veri�ed at best, but whi
h prima fa
ie isat varian
e with plain observations we 
an make in everyday life: e.g. althoughthe laws of gravity 
an be des
ribed in terms of simple mathemati
al regulari-ties there is nothing that suggests that gravity is itself a 
omputational pro
ess.Metaphysi
al 
omputationalism therefore should be reje
ted as uns
ienti�
. Fur-thermore, given the 
aws of MDL dis
ussed above, it is diÆ
ult to defend theidea that the human mind evolved as a purely algorithmi
 
ompression basedproblem solver.The reje
tion of 
omputationalism implies a view of 
omputational modelsof pro
esses in the world as phenomenologi
al : i.e. they des
ribe pro
esses in theworld without any presupposition about their ontologi
al status. An explanationof fa
t that the world at di�erent levels of aggregation and over di�erent phasetransitions 
an be des
ribed by simple high level mathemati
al equations remainsone of the great 
hallenges of s
ien
e. Assuming that the world is essentially a
omputational pro
ess will not bring this issue any 
loser to a solution.1 This last 
ondition seems to rule out exa
tly those data sets that given the resultsof Adriaans and Vitanyi [4℄ 
ould bring a general 
ompression based bounded prob-lem solver in to trouble. It is a well known prin
iple in information theory that ifa set of messages has systemati
 density variations it does not have maximal en-tropy. A environment is benign if the opposite 
ondition also holds: If a data set is
ompressible it has density variations. This 
ondition rules out the mali
ious demonthat presents data sets that are apparently random, but in fa
t 
an be 
ompressedsubstantially, e.g. de
imal expansions of the number �. Su
h data sets indeed seemto be suÆ
iently rare in our universe su
h that a failure to re
ognize them in generaldoes not 
reate life threatening risks. Of 
ourse they still do o

ur in nature.2 Konrad Zuse, as he referred to this as "Re
hnender Raum (Zuse 1967, 1982).



1.2 Meaningful informationThere is a 
onne
tion with the notion of meaningful information. Formal de�ni-tions of information like those of Shannon and Kolmogorov do measure informa-tion in data sets but they do not 
apture the notion of meaningful information.This is immediately 
lear when we note that the most information ri
h radiotransmission we 
ould send is pure noise. Any station following this strategywould soon loose its audien
e. Data sets with maximum entropy are not 
on-sidered to be interesting by human beings: su
h sets are ri
h in information butthey 
ontain no meaningful information. On the other hand a transmission ofpure silen
e would also not be 
onsidered to be very informative. They 
ontainno information at all. Meaningful information seems to exist in the 'sweet spot'between order and 
haos.In this paper I asso
iate meaningfulness with fa
ti
ity, but this is no doubtonly a 
rude approximation. In general s
ien
e, in the study of human 
ognitionand even in art we seem to have an interest in systems that have a 
omplex-ity between order and 
haos, between boredom and noise. The 'interestingness'of these data sets is related to 
ompressibility ([11℄, [13℄). The thermodynami
explanation for this seems to be the fa
t that, in a universe in whi
h entropy nat-urally in
reases over time, systems that maintain a low entropy over a period oftime are 'by de�nition' interesting. Compressibility is asso
iated with stru
ture,with self-organization and with the prin
iples of life itself.It is important to distinguish this question from the related ambition of re-sear
hers that are interested in formulating a theory of optimal learners basedon Kolmogorov 
omplexity. S
hmidhuber even has formulated a theory of al-gorithmi
 aestheti
s and low 
omplexity art along these lines [26℄. Re
ently heintrodu
ed a notion of interestingness as the �rst derivative of subje
tive 
om-pressibility [28℄. This theory deals with a subje
tive notion of interestingness ata 
ertain time for a 
ertain agent. Fa
ti
ity on the other hand is an a prioriquality of data sets, i.e. produ
ts of the human mind. As su
h it leads to pre-di
tions that 
an in prin
iple be veri�ed empiri
ally given the present state ofte
hnology. Sin
e I am also interested in a theory of algorithmi
 estheti
s I willpresent a 
riti
al dis
ussion of the ideas of S
hmidhuber in a separate paragraphat the end of this paper.3In the 
ontext of this paper I am not so mu
h interested in the de�nition ofan optimal problem solver but in the question why the universe produ
es datasets from whi
h anything 
an be learned at all. Why does the universe a
t as a
ooperative tea
her? Why do we live in a universe in whi
h MDL is a valuablemethodologi
al prin
iple? The reason for this shift in dire
tion is the insightthat the study of algorithmi
 strategies for problem solving, as su
h, do not ex-plain the eÆ
ien
y with whi
h we solve problems. Theories about algorithmi
allyoptimal problems solvers give an interesting framework for the trans
endentalanalysis of learning but in order to explain the eÆ
ien
y of learning an analysisof additional bias is ne
essary. This paper does a �rst step in this dire
tion by3 The ideas on a diale
ti
s of fa
ti
ity and art were presented in my Paradiso le
tureat the beginning of 2007.



analyzing bias that stem from thermodynami
s. This shift is not in 
on
i
t withSolomono�'s resear
h program but more or less orthogonal to it. Surprisingly,from a philosophi
al point of view, this 
hange of dire
tion is asso
iated with ashift from an empiri
ist tabula rasa position to a more Cartesian/Kantian viewin whi
h a learning agent shares bias with the world in whi
h it is embedded.This should be interpreted not so mu
h as innate ideas, but as the theory that anagent inherits distributions from the world from whi
h it originates. This is fully
ompatible with the observation 
ited above of Solomono� that human beingsare: "born with a reasonably good builtin a priori probability distribution."

Fig. 1. Fa
ti
ity s
ores for mixing bla
k and white paint. The fa
ti
ity of a data xis the produ
t (times 4) of the normalized entropy C(x)=Cmax(x) and the normalizedrandomness de�
ien
y (Cmax(x)�C(x))=Cmax(x). Con�guration 4 has the best balan
ebetween order and 
haos and thus would be the most 'interesting' one. The s
ores havebeen 
al
ulated using JPEG, followed by RAR 
ompression. Maximal entropy Cmax(x)has been approximated by adding 400 % noise to the images. The standard entropyC(x) is approximated by the �le size after 
ompression. Note that the resolution ofthe 
amera in
uen
es the measurements. The addition of hard pixel noise 
reates arandom image that the 
amera never 
ould 
apture. This is the reason that none ofthe pi
tures rea
h the maximal fa
ti
ity of 1.



1.3 An experimentHere is an experiment. Take a 
up of 
o�ee and pour some 
ream in it (SeeFigure 1). Take a pi
ture of it with your digital 
amera. In the beginning the
ream will be just an uninteresting blob. Stir slowly and make pi
tures of variousstages that have ni
e patterns. Continue until the 
ream has dissolved and your
up has an even brown 
olor. Drink the 
o�ee, then look at the �le size of thedi�erent pi
tures.If your 
amera uses an adequate 
ompression algorithm you will �nd that the�le size has in
reased up to a 
ertain point and then de
reases. The 
ompressionalgorithm of your 
amera re
e
ts the 
omplexity of the data set until the momentthat the 
omplexity has rea
hed a global equilibrium and is beyond its resolution.In this experiment we have a system that evolves in time, the 
up of 
o�ee, and adata set of observations, the pi
tures. The 
rux of this experiment is that the sizeof the individual pi
tures somehow re
e
ts the 'interestingness' of the system. Inthe beginning there is a lot of order in the system. This is not very interesting.In the end there is an equilibrium that also has little 
ognitive appeal.In the following it will prove useful to des
ribe these 
ompressions in terms ofa so-
alled two-part-
ode: a des
ription of a general 
lass of sets, the model 
odeand an element or a set of elements of this set, the data-to-model-
ode [30; 31℄.Let me give some examples:{ Symmetry. This is one of the most fundamental ordering prin
iples in na-ture. Most living 
reatures have symmetry: plants, trees, predator, prey. Ifa data set has symmetry it means that we only have to des
ribe half ofit (the data-to-model-
ode) plus some information about the nature of thesymmetry of 
onstant length (the model-
ode). In the limit su
h a data set
an be 
ompressed to at least half its size. In terms of generating languagessymmetry is 
ontext free: a symmetri
 data set 
an be produ
ed by a simplememoryless 
entral pro
ess. Dis
overing symmetry in a data set 
an be seenas a very simple learning problem. It 
an easily be dis
overed in linear time.For some thoughts on symmetry and entropy see [21℄.{ Repetition. In order to des
ribe a repeating pattern I only have to givea des
ription of the generating pattern (the data-to-model-
ode) and someinformation about the way the pattern repeats itself (the model-
ode). Rep-etition is more 
omplex than symmetry in the sense that it presupposes agenerating pro
ess with a memory. In terms of languages: repetition is 
on-text sensitive. Finding repeating patterns in a data set is also a basi
 learningproblem that 
an be solved in time n logn [2℄.{ Grammar. A 
orpus of a language 
ould be des
ribed in terms of the gram-mar G (the model-
ode) of the language and a set of indexes 
orrespondingto an enumeration of the senten
es in the 
orpus (the data-to-model-
ode).If the size of the 
orpus is large enough in relation to the size of the grammarG then this des
ription in terms of two will be shorter than an extensionaldes
ription of the senten
es in the 
orpus. Finding this des
ription is a wellstudied learning problem. If the language is regular, then the task of ap-



proximating the smallest DFA 
onsistent with a set of senten
es is NP-hard[24; 1℄.{ Program. We 
ould ask ourselves, given a 
ertain data set: what would bethe shortest program generating this data set in a 
ertain programming lan-guage, or, even more general, we 
ould try to �nd the shortest 
ombination ofa Turing ma
hine Ti (the model-
ode) and a program P (the data-to-model-
ode). In a sense this would be, from a 
omputational point of view, theultimate 
ompression possible and the Turing ma
hine Ti would be the ulti-mate 'explanation' of the data set. Needless to say that be
ause of the Haltingproblem there is no algorithm that will 
onstru
t this ultimate 
ompressionfor us. The problem is unde
idable. Still, 
onditional to the programminglanguage we 
hoose, the notion of the shortest program generating a 
er-tain data set is well de�ned. Kolmogorov 
omplexity studies these optimal
ompressions from the perspe
tive of universal Turing ma
hines [31℄.Here I have des
ribed four 
lasses of learning problems (varying from veryeasy, via NP-hard, to unde
idable) as 
ompression problems where the task isto �nd a two-part 
ode 
ompression for a data set. Apparently there is a deep
onne
tion between data 
ompression and learning.2 Learning and Thermodynami
sLet us rede�ne the problem of learning as a general problem of indu
tion. Sup-pose we study some universe � that 
ontains a 
ertain system �. In prin
iple �
ould be anything: the human brain, the living 
ell, a bla
k hole, the weather.For the moment we will suppose that � is an isolated physi
al system that existsin spa
e and time. The problem of indu
tion now takes the following form: 
anwe develop a des
ription of � that: 1) explains its stru
ture 2) predi
ts its behav-ior? Behind these issues there is still a deeper problem. Note that by denotingS as a system we have already made a hermeneuti
 jump. By 
onsidering � asa system we have de
ided that it is interesting. The question is: 
an we give aformal des
ription of this notion of interestingness. This last question 
annot beanswered by means of an analysis of the formal 
omplexity of � alone. In or-der to understand these questions we must look at the physi
al ba
kground andspe
i�
ally at the theory of thermodynami
s 4. The �rst law of thermodynami
sdes
ribes the 
hange of internal energy U of a system in terms of the di�eren
ebetween the amount of heat Q absorbed by the system and the amount of workW done by the system: dU = �dQ� �dW (1)The se
ond law of thermodynami
s states that a 
hange of entropy of any systemis dire
tly related to a 
hange in the amount of heat absorbed by the system,and inversely related to the absolute temperature T . Moreover the entropy neverde
reases in time: dS = �dQT ; dSdt � 0: (2)4 For a dis
ussion of the relation between physi
s and information see [5℄



An important notion for our resear
h is that of free energy :F � U � TS (3)The free energy is asso
iated with the amount of energy in the system that isfree to do work. If a system is in a state of thermal equilibrium then the freeenergy is minimal and the entropy is maximal. In a gas the total entropy inequilibrium is given by: S = �Xi pi log pi (4)where pi are the individual probabilities of the velo
ities of the parti
les. In thelimiting 
ase where all probabilities are equal pi = p = 1=w we get:S = lnw: (5)This is the formula that Boltzmann had engraved on his tombstone. It tells usthat in a state of maximal equilibrium the entropy is the log of the number ofa

essible states.What should we 
on
lude from this analysis in the 
ontext of learning? Notethat for a 
losed system in thermodynami
 equilibrium ma
ros
opi
ally measur-able quantities do not vary over time. This means that there is very little that we
an learn about a system in thermodynami
 equilibrium. Su
h systems do nothave an internal stru
ture and they do not have an interesting history. Conse-quently learnability is asso
iated with non-equilibrium states of systems. Here isone possible obje
tive answer to the question what distinguishes a system fromits environment. Separate systems are those parts of the world that maintain enentropy that is di�erent from their environment during a 
ertain period of time.Consequently learnable systems are asso
iated with variation in entropy. Thisimplies no maximal entropy and thus an amount of free energy larger than zero.Self-organization is typi
ally asso
iated with systems that maintain an entropythat is di�erent from the environment for a 
ertain period of time. A world thatis in a state of thermal equilibrium does not 
ontain any meaningful information,has no stru
ture, no interesting development and no free energy.3 Kolmogorov 
omplexityNow we turn our attention to Kolmogorov 
omplexity as a theory about optimal
omplexity of data sets. Let x; y; z 2 N , where N denotes the natural numbersand we identify N and f0; 1g� a

ording to the 
orresponden
e(0; �); (1; 0); (2; 1); (3; 00); (4; 01); : : :Here � denotes the empty word. The length jxj of x is the number of bits in thebinary string x, not to be 
onfused with the 
ardinality jSj of a �nite set S. Forexample, j010j = 3 and j�j = 0, while jf0; 1gnj = 2n and j;j = 0. The emphasis ison binary sequen
es only for 
onvenien
e; observations in any alphabet 
an be



en
oded in a `theory neutral' way. Below we will use the natural numbers andthe binary strings inter
hangeably. In the rest of the paper we will interpret theset of models M in the following way:De�nition 1. Given the 
orresponden
e between natural numbers and binarystrings,M 
onsists of an enumeration of all possible self-delimiting programs fora presele
ted arbitrary universal Turing ma
hine U .5 Let x be an arbitrary bitstring. The shortest program that produ
es x on U is x� = argminM2M(U(M) =x) and the Kolmogorov 
omplexity of x is C(x) = jx�j. The 
onditional Kol-mogorov 
omplexity of a string x given a string y is C(xjy), this 
an be inter-preted as the length of a program for x given input y. A string is de�ned to berandom if C(x) � jxj.This makesM one of the most general model 
lasses with a number of verydesirable properties: it is universal sin
e all possible programs are enumerated,be
ause the programs are self-delimiting we 
an 
on
atenate programs at will,in order to 
reate 
omplex obje
ts out of simple ones we 
an de�ne an a-priori
omplexity and probability for binary strings. There are also some less desirableproperties: C(x) 
annot be 
omputed (but it 
an be approximated) and C(x) isasymptoti
, i.e. sin
e it is de�ned relative to an arbitrary Turing ma
hine U itmakes less sense for obje
ts of a size that is 
lose to the size of the de�nition ofU . Details 
an be 
he
ked in [31℄. We have:argminM2M � logP (M)� logP (DjM) =argminM2MC(M) + C(DjM) =MMDL (6)Under this interpretation of M, the length of the optimal 
ode for an obje
t isequivalent to its Kolmogorov 
omplexity.In this paper I will often use the notions of typi
ality and in
ompressibilityof elements of a set, e.g. in those 
ases where I state that the vast majority ofelements of a set have a 
ertain quality. This might at �rst sight sound a bitina

urate. To show that this notion a
tually has an exa
t de�nition I give thefollowing theorem due to Li and Vit�anyi [31℄ pg. 109):Theorem 1. Let 
 be a positive integer. For ea
h �xed y, every �nite set A of
ardinality m has at least m(1� 2�
) + 1 elements x with C(xjy) � logm� 
.Proof: The number of programs of length less than logm� 
 islogm�
�1Xi=0 2i = 2logm�
 � 1Hen
e, there are at least m�m2�
 + 1 elements in A that have no program oflength less than logm� 
.5 Here the notational 
onventions of two dis
iplines 
lash. U is the internal energy ofa system U(x) is the Universal Turing ma
hine with input x. Whi
h interpretationis meant should be 
lear from the 
ontext.



This shows that in the limit the number of elements of a set that have lowKolmogorov 
omplexity is a vanishing fra
tion. In the limit a typi
al element ofa set is a random element. In general the vast majority of elements of a set isnot 
ompressible. One of the problems with Kolmogorov 
omplexity is that itspe
i�es the length of a program but tells us nothing about the time 
omplexityof the 
omputation involved. Therefore Kolmogorov 
omplexity 
an not be useddire
tly to prove lower bounds for the time 
omplexity of problems.3.1 Randomness de�
ien
yIt is important to note that obje
ts that are non-random are very rare. To makethis more spe
i�
: in the limit the density of 
ompressible strings x in the setf0; 1g�k for whi
h we have C(x) < jxj is zero [31℄. The overwhelming majorityof strings is random. In di�erent words: an element is typi
al for a data set ifand only if it is random in this data set. In yet di�erent words: if it has maximalentropy in the data set. This insight allows us to formulate a theory independentmeasure for the quality of models: randomness de�
ien
y.We start by giving some estimates for upper-bounds of 
onditional 
omplex-ity. Let x 2M be a string in a �nite model M thenC(xjM) � log jM j+O(1) (7)i.e. if we know the set M then we only have to spe
ify an index of size log jM jto identify x in M . Consequently:C(x) � C(M) + log jM j+O(1) (8)The fa
torO(1) is needed for additional information to re
onstru
t x fromM andthe index. Its importan
e is thus limited for larger data sets. These de�nitionsmotivate the famous Kolmogorov stru
ture fun
tion:hx(�) = minS flog jSj : x 2 S;C(S) � �g (9)Here � limits the 
omplexity of the model 
lass S that we 
onstru
t in orderto 'explain' an obje
t x that is identi�ed by an index in S. 6 Let D � M be asubset of a �nite model M . We spe
ify d = jDj and m = jM j. Now we have:C(DjM;d) � log�md�+O(1) (10)Here the term �md � spe
i�es the size of the 
lass of possible sele
tions of d elementsout of a set of m elements. The term log �md � gives the length of an index for thisset. If we know M and d then this index allows us to re
onstru
t D.A 
ru
ial insight is that the inequalities 7 and 10 be
ome '
lose' to equalitieswhen respe
tively x and D are typi
al for M , i.e. when they are random in M .6 This � 
ould be seen as a fa
tor that limits the resolution of the 
amera in �gure 1.



This typi
ality 
an be interpreted as a measure for the goodness of �t of themodel M . A model M for a data set D is optimal if D is random in M , i.e. therandomness de�
ien
y of D inM is minimal. The following de�nitions formulatethis intuition. The randomness de�
ien
y of D in M is de�ned by:Æ(DjM;d) = log�md�� C(DjM;d); (11)for D � M , and 1 otherwise. If the randomness de�
ien
y is 
lose to 0, thenthere are no simple spe
ial properties that single D out from the majority ofdata samples to be drawn from M .The minimal randomness de�
ien
y fun
tion is�x(�) = �D(�) = minM fÆ(DjM) :M � D; C(M) � �g; (12)If the randomness de�
ien
y is minimal then the data set is typi
al for thetheory and, with high probability, future data sets will share the same 
hara
ter-isti
s, i.e. minimal randomness de�
ien
y is also a good measure for the futureperforman
e of models. For a formal proof of this intuition, see [30℄.3.2 Kolmogorov 
omplexity meets thermodynami
sIn this paragraph we analyze the following 
entral theorem that relates the freeenergy of a system with the randomness de�
ien
y of the data set resulting fromobservations of the system:Theorem 2. For a stati
 measurement ht : � ! f0; 1g� at moment t of adynami
 system � with free energy F we have:ht(F ) = Æ(x):Here Æ(x) is the randomness de�
ien
y of the data set x represented as a string.Proof: Consider the following thought experiment. We 
olle
t a number of ob-servations (measurements) of a system � at a 
ertain time t. A paradigmati
example 
ould be a single photo of a dynami
 system that evolves in time, saya satellite pi
ture of a hurri
ane. Su
h a pi
ture 
ould be seen as a homomor-phism from a system � to a data set x. Call the system � and the data setthat results from the measurements D represented as a binary string x. Sin
ethe information in the measurements is supposed to be representative, the in-formation in the string x re
e
ts the thermodynami
 state of the system frozenin time. Suppose we want to de�ne su
h a homomorphism ht that depi
ts thestru
ture of � on x at moment t. Sin
e we are abstra
ting from the dimensionof time we 
an interpret de�nition 3 as time neutral, mu
h in the same way thatwe 
an not dedu
e the speed of a 
ar from its pi
ture. This means that we 
aninterpret T to be the unit temperature of the new system. The de�nition 3 forfree energy would be transformed in the following wayht(F ) = ht(U � TS) =



ht(U)� ht(T )ht(S) =ht(U)� ht(S)The other units get an interpretation along the following lines. If � is in equi-librium we expe
t x to be random. A

ording to 5 the maximal entropy of xwould be the set of all a

essible states. This is for a binary string 2jxj, whi
hgives log 2jxj = jxj as its maximal Boltzmann entropy. This is in line with theKolmogorov estimate of the maximum 
omplexity of a random string whereC(x) � jxj. Conversely if x is 
ompressible and there are no measurement dis-tortions we may (be
ause of ht) 
on
lude with high probability that � is not inthermal equilibrium. We may see the Kolmogorov 
omplexity as an a priori en-tropy measure of a binary string, i.e. ht(S) = C(x). Clearly the maximal entropyof a string x is rea
hed when C(x) � jxj, i.e. ht(U) = jxj:ht(F ) = jxj � C(x)Note that jxj � C(x) is the randomness de�
ien
y of the string x. Conse-quently the Helmholz free energy U � TS of the system � is under the homo-morphism ht transformed in to the randomness de�
ien
y Æ(x) of x:ht(F ) = Æ(x)This 
on
ludes the proof of the theorem. If we 
olle
t a set of adequatemeasurements of a system at time t we may say that the 
ompressibility or ran-domness de�
ien
y of the resulting data set re
e
ts the free energy of the system.If the data set is 
ompressible then the system 
ontains free energy. In that 
aseit is not in thermodynami
 equilibrium and 
apable of performing work. Onemight 
all theorem 2 the fundamental learnability theorem for physi
al systems.It shows how learning as data 
ompression and thermodynami
s intera
t. Data
ompression identi�es systems that are not in thermal equilibrium: i.e. systemswith stru
ture, systems with self organization, living systems et
.Consider the following simple example. Below we have 4 data sets. Data-set-1 is visually asso
iated with a non-eqilibrium state, Data-set-2 is equivalent toan equilibrium state. The last two sets are the result of applying a 3 to 1 bithomomor�sm to these data sets.Data-set-1 Non-equilibrium: A 57x8 binary spa
e with 40 bits densely pa
ked000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000101011011011110000000000000000000000000000000000000000000111101110111010000000000000000000000000000000000000000000110110101111010000000000000000000000000000000000000000000100111011011100000000000000000000000000000000000000000000



Data-set-2 Equilibrium: A 57x8 binary spa
e with 40 bits randomly dis-tributed001000010010000000000100000000000010000000000100000000000000010100000000000000100000001000000010000000000010000000010000000000000000000000100000000000001000000000010100000000000100000000010000000001000000000000001000000000100000001000000000100000000000100000000001000000001000000001000000000000000000000000100000000000001000100000000000000100000010000000000000000000000010000000000000000000000000000000000100000000000010000010000000000100000000010010000000Data-set-1' the result of a 3 to 1 density homomor�sm00000000000000000000000000000000000000000000000000000000000000000000000000001111100000000000000111100000000000000011110000000000000000111100000000000000Data-set-2' the result of a 3 to 1 density homomor�sm00000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000Figure 2 shows the e�e
ts of applying Rar 
ompression to these sets. Di-re
t Rar 
ompression gives an in
rease in size for Data-set-2 versus Data-set-1,however, after the appli
ation of a lossy density homomor�sm (3 bits to 1) theimage Data-set-2' is smaller then Data-set-1', i.e. the 
omplexity of Data-set-2 isnot preserved under simple density homomor�sms. This illustrates the fa
t thatphase transitions that are normally asso
iated with high 
omplexity (in the orderof Avogadro's number) in thermodynami
 systems already o

ur under simple
onditions in dis
rete systems and that they 
an be measured using state of theart 
ommer
ial data 
ompression routines. Given the fa
t that information dis-tribution fun
tions in our universe are of this lossy type it is to be expe
ted thatagents that evolve in su
h an environment ignore the 
omplexity in equilibriumdata sets.



Fig. 2. The e�e
t of data 
ompression under density homomor�sms for very simpleequilibrium and non-equilibrium data sets (456 bytes).4 Fa
ti
ityThis analysis shows that entropy and Kolmogorov 
omplexity not ne
essarilymeasure the interestingness of a system of a data set. All systems in the uni-verse will eventually rea
h a state of maximal entropy. A system in maximalentropy has played its part and has no interesting stru
ture. Likewise, althougha random string x 
ontains in a way the maximum amount of information pos-sible for a string of length jxj, it 
ontains without any 
ontext no meaningfulinformation. We 
an not expe
t to learn very mu
h about a system that is ina state of thermodynami
 equilibrium. On the other hand a string with low
omplexity does not 
ontain very mu
h information and thus by de�nition itdoes not 
ontain mu
h meaningful information. Interestingness or meaningful-ness of a data set seems to be lying in a tension between 
haos and stru
ture.As a �rst approximation of this notion I will de�ne the idea of the fa
ti
ity ofa data set. The fa
ti
ity of a binary string will be maximal if C(x) = 1=2jxj.The maximum amount of meaningful information 
an be measured in terms ofthe what I 
all the normalized fa
ti
ity of a string. It is the produ
t of thenormalized entropy C(x)=Cmax(x) and the normalized randomness de�
ien
y(Cmax(x) � C(x))=Cmax(x). For strings this is:'(x) = 4C(x)jxj � jxj � C(x)jxj (13)The fa
tor 4 serves to se
ure a maximum fa
ti
ity of 1. Fa
ti
ity 
an be seenas a normalized information density measure. For thermodynami
 systems thisequation is transformed in to:



'(�) = 4 SSmax � Smax � SSmax (14)This is the rationale behind the experiment represented in �gure 1. Here I havetaken pi
tures of the pro
ess of mixing bla
k and white paint. I use the fa
ti
itys
ore to sele
t the most interesting pi
ture.

Fig. 3. A tree representation based on the normalized 
ompression distan
e between12 Piano pie
es.The fa
t that state of the art data 
ompression routines 
an be used to makepredi
tions about data sets that seem to have 
ognitive relevan
e was re
entlydis
overed by Vit�anyi and Cilibrasi [9℄. Suppose that x and y are data sets andthat we have a 
on
atenation operation on these sets that allows us to form xy.Let C be a general 
ompression routine su
h that C(x) is the length in bits ofdata set x when 
ompressed by C. We 
an now de�ne the related NormalizedCompression Distan
e (NCD):NCD(x; y) = C(xy) �minfC(x); C(y)gmaxfC(x); C(y)g (15)Figure 3 shows that NCD seems to be able to identify style 
onne
tionsbetween di�erent piano pie
es. NCD seems to work well for data sets that havea natural linear representation su
h as musi
 and language. For images it seemsto work less well due to the fa
t that we do not have good general purpose
ompression algorithms for higher dimensional data sets.



Fig. 4. Example of a simple rule breaking pro
ess that is not fa
ti
, i.e. it is not 
omplexenough to sustain fa
ti
ity. We start with a zero. At ea
h move the rule breaking routine
he
ks the fa
ti
ity of the string using Rar 
ompression. If the string is too 
omplexthat last symbol is repeated. If the 
omplexity is too low the symbol of the sequen
e is
hanged from 0 to 1 or vi
e versa. At the arrow this rule breaking routine ends in a loopof 01 sequen
es that 
an easily be 
ompressed by Rar and thus 
ontinues inde�nitely.This is the fate of any re
ursive rule breaking routine that is not '
lever' enough tooutsmart the 
ompressor. Re
ursion is not 
reative.4.1 Fa
ti
 pro
esses and fa
ti
 data setsThe fa
ti
ity is optimal if the balan
e between order and 
haos is optimal. Fa
ti
-ity is partly motivated by insights from thermodynami
s, but also be introdu
edvia other 
onstru
tions. Fa
ti
ity 
an be seen as a rule breaking 
on
ept. Fun
-tions that follow and break rules with some regularity 
reate data sets with highfa
ti
ity. Suppose we want to 
onstru
t a binary string of k bits with maximumfa
ti
ity, i.e. C(x) = k=2. For any k of suÆ
ient size, strings with near optimalfa
ti
ity exist in abundan
y: just 
on
atenate a low 
omplexity string of lengthof 
a. k=2+ logk=2+O(1) to a random string of length 
a. k=2� logk=2�O(1),where the term log k=2 serves to 
ode the length and O(1) serves to 
on
atenatethe �rst part to the se
ond part. This gives at least 2k=2�log k=2�O(1) stringswith basi
 near optimal fa
ti
ity and there are many more. We are interested inpro
esses that 
reate fa
ti
ity. The following de�nition is useful:De�nition 2. An in
remental information 
reation pro
ess is 
alled fa
ti
 ifit maintains 
onstant fa
ti
ity of the total generated data set.



We 
all data sets with high fa
ti
ity also fa
ti
. Note that in order for a pro
essto be fa
ti
 it must have a

ess to an unlimited sour
e of new information duringits exe
ution. In general, fa
ti
 pro
esses are the result of two 
on
i
ting fun
-tions: one generating fun
tion that is an unlimited sour
e of new informationand a 
onstraining fun
tion that regulates the produ
tion of information. Notethat although fa
ti
 data sets exist in abundan
e there is no re
ursive routinethat 
an 
onstru
t them sin
e the Kolmogorov 
omplexity needed to judge thefa
iti
ity s
ore 
an not be 
omputed (See �gure 4). Another way to say the samething is that re
ursive routines 
an not 
reate new information fast enough tosustain fa
ti
ity: re
ursion is not fa
ti
. Data sets that are fa
ti
 with high prob-ability 
an easiliy be approximated by 
omputational routines that use a randomgenerator as generating fun
tion and a standard data 
ompression fun
tion as
onstraining fun
tion. (See �gure 5).

Fig. 5. Example of a fa
ti
 pro
ess based on a random generator. This set was 
reatedin the following way. First a test run with a data set of random 
oin
ips was used toestimate Cmax, sin
e Rar is not an optimal 
ompressor for binary strings representedas bytes. As a result a base 
ompression fa
tor 0.22 was 
hosen as a fa
ti
ity target.The string starts with 10 zero's. If the Rar 
omplexity is too high, the sequen
e is
ontinued with 10 versions of the last symbol. If the Rar 
omplexity is too low, thesequen
e is 
ontinued with 10 random sele
tions from f1; 0g. The resulting string is:000000000000000000000000000000000000000000000000000000000000111000000000000000000000000000000000000011000101000000000000000000000000000000011010000111111111111100100000011111111111111111111111111111110101111011111111111111111111111011000110000000000011100110000111100010000000000000000000001010000011There is an abundan
e of examples of fa
ti
 pro
esses:



{ Evolutionary pro
esses are in general fa
ti
. Here mutation is the informationgenerating fun
tion and the environment that regulates survival serves as a
onstraining fun
tion.{ A 
ooperative tea
her (See [3℄. If we have a learning agent with limited 
om-putational resour
es (the 
onstraining fun
tion) a 
ooperative tea
her (thegeneration fun
tion) would follow a strategy of sele
ting simple examplesthat allow the 'pupil' to 
ompress the examples in to rules with relativeease. When the pupil has digested the simple examples the tea
her 
an shiftto more 
omplex ones. Thus the 
omplexity of the examples in
reases mono-toni
ally. The tea
her will sele
t his examples in a narrow band betweenwhat the pupil already knows (order) and what is too 
omplex to pro
ess(subje
tive 
haos).{ Curiosity driven '
reative' agents as proposed by S
hmidhuber (See [28℄).Under assumption that the general 
apa
ity to learn gives an evolutionarybene�t we expe
t learning agents that are the produ
t of evolution to havesome me
hanism that drives them to sele
t new examples that are opti-mal given their 
urrent theories about the stru
ture of their environment.Su
h an explanation of the evolutionary bene�ts of 
uriosity seems plausi-ble. By the same token su
h a 
uriosity driven agent should be in
lined toignore any low-
omplexity examples that are already pro
essed as boringand sear
h examples that 'satisfy' its 
uriosity. These are the examples thatthe agent will �nd 'interesting' in this stage of the learning pro
ess. Herethe sear
h pro
ess of the agent of the generating fun
tion and the subje
tive
ompression routine of the agent is the 
onstraining fun
tion. One mighteven interpret 
uriosity driven s
ienti�
 heuristi
s as an advan
ed variant ofsu
h an evolutionary survival strategy for the human ra
e.5 MDL and 
ode optimizationLet us return to our original ambition. Given a system � we 
olle
t a set ofmeasurements D and represent them in a string x. We are interested in an ex-planation of the stru
ture of � and a predi
tion of its behavior. What do theseambitions mean in the 
ontext of the framework that I have des
ribed? We se-le
t a suÆ
iently small universal Turing ma
hine U . 7This would be a generaluniversal ma
hine that does not 
ontain any information about x. The short-est program that produ
es x on U is x� = argminM2M(U(M) = x) and theKolmogorov 
omplexity of x relative to U is C(x) = jx�j. Note that in this
ontext x� is a random string, but it is 
ertainly not meaningless, sin
e we haveU(x�) = x. In this sense x� 'explains' all of the stru
ture of x. x� 
annot be 
om-puted, but it 
an be found in �nite time by means of dovetailing an enumerationof all possible 
omputations on U . However x� does not help us mu
h in termsof understanding the stru
ture of x. This 
hanges if we try to 
ompress x in to7 Re
ently Alex Smith proved an intuition of Wolfram about the existen
e of a verysimple universal Turing ma
hine with 3 symbols and 2 internal states [33℄.



a so-
alled two part 
ode. It is important to note that two part 
ode optimiza-tion is a spe
i�
 appli
ation of MDL. The majority of work on MDL is 
loser inspirit to the statisti
al than to the Kolmogorov 
omplexity world ([17℄). Ratherthan two-part 
odes, one uses general universal 
odes for individual sequen
es;two-part 
odes are only a spe
ial 
ase. We give the traditional formulation ofMDL [23; 6℄:De�nition 3. The MinimumDes
ription Length prin
iple: The best the-ory to explain a set of data is the one whi
h minimizes the sum of{ the length, in bits, of the des
ription of the theory and{ the length, in bits, of the data when en
oded with the help of the theoryLet M 2 M be a model in a 
lass of models M, and let D be a data set. Theprior probability of a hypothesis or modelM is P (M). Probability of the dataD is P (D). Posterior probability of the model given the data is:P (M jD) = P (M)P (DjM)P (D)The following derivation [23℄ illustrates the well known equivalen
e betweenMDL and the sele
tion of the Maximum A posteriori hypothesis in the 
on-text of Shannon's information theory. Sele
ting the Maximum A Posteriorihypothesis(MAP): MMAP � argmaxM2M P (M jD)= argmaxM2M (P (M)P (DjM))=P (D)(sin
e D is 
onstant) � argmaxM2M (P (M)P (DjM))� argmaxM2M logP (M) + logP (DjM)� argminM2M � logP (M)� logP (DjM)where a

ording to Shannon � logP (M) is the length of the optimal model-
ode in bits and � logP (DjM) is the length of the optimal data-to-mode-
ode inbits. This implies that the model that is 
hosen with Bayes' rule is equal to themodel that MDL would sele
t:MMAP �MMDLThe formula argminM2M� logP (M)� logP (DjM) indi
ates that a model thatgenerates an optimal data 
ompression (i.e. the shortest 
ode) is also the bestmodel. This is true even if M does not 
ontain the original intended model aswas proved by [30℄. It also suggests that 
ompression algorithms 
an be usedto approximate an optimal solution in terms of su

essive steps of in
remental




ompression of the data set D. This is not true as was shown by Adriaans andVit�anyi[4℄. Yet this illi
it use of the prin
iple of MDL is 
ommon pra
ti
e.We now turn our attention to in
remental 
ompression. Equation 6 givesthe length of the optimal two-part-
ode. The length of the two-part-
ode of anintermediate model Mi is given by:�(Mi; d) = log�mid �+ C(Mi) � C(D)�O(1) (16)This equation suggests that the optimal solution for a learning problem 
an beapproximated using an in
remental 
ompression approa
h. This is indeed whata lot of learning algorithms seem to be doing: �nd a lossy 
ompression of thedata set �nding regularities. This holds for su
h diverse approa
hes as nearestneighbor sear
h, de
ision tree indu
tion, indu
tion of asso
iation rules and neuralnetworks. There is a 
aveat however; Adriaans and Vit�anyi [4℄ have shown thatthe randomness de�
ien
y not ne
essarily de
reases with the length of the MDL
ode, i.e. shorter 
ode does not always give smaller randomness de�
ien
y, e.g.a better theory. This leads to the following observations:{ The optimal 
ompression of a data set in terms of model and a data-to-model
ode always gives the best model approximation "irrespe
tive of whether the'true' model is in the model 
lass 
onsidered or not" [30℄8.{ This optimal 
ompression 
annot be 
omputed.{ Shorter 
ode does not ne
essarily mean a better model.These observations show that the naive use of the MDL prin
iple is quite risky.Learning by means of in
remental 
ompression might lead to a model that isworse then the one we started with. These observations should make us 
autiousabout the use of in
remental 
ompression algorithms. Yet in the real world data
ompression seems to be a reasonable indu
tive strategy. This amounts to thefollowing:Claim. The distributions we �nd in the world are generally benign in the sensethat time and memory bounded tests with reasonable limits for Kolmogorov
omplexity are suÆ
ient for an adequate 
omplexity estimate.What the memory and pro
essing time limits would be is a problem for an otherpaper, but a reasonable intuition would be that the limits lie well within thepro
essing 
apa
ity of the human brain. Another way of formulating the sameprin
iple is: if a system looks like it is in thermodynami
 equilibrium, with highprobability it is. This implies that data sets that look random but in fa
t arehighly stru
tured, like the de
imal expansion of the number � are highly rare8 This is true only in this spe
i�
 
omputational framework of referen
e. In a proba-bilisti
 
ontext, both for Bayesian and MDL inferen
e, the assumption that the truemodel is in the model 
lass 
onsidered 
an sometimes be 
ru
ial - this also explainswhy in Vapnik-Chervonenkis type approa
hes, 
omplexity is penalized mu
h moreheavily than in MDL [16℄ ).



in nature. Why (and if) these data sets do not o

ur is not 
ompletely 
lear,but a natural assumption would be that natural systems that are 
apable of
al
ulating su
h ri
h data sets are by nature instable and therefore do not existlong enough in time.

Fig. 6. Fa
ti
ity s
ores for three well known works of art. Pi
asso's Guerni
a s
oresa maximal 1. It 
ontains optimal meaningful information. As was to be expe
ted,the bla
k square of Malewi
h has a low s
ore on the interestingness s
ale. It 
ontainslittle information. But also Pollo
ks 
omposition No. 5 has a lower s
ore. In a way, it
ontains 'too mu
h' information to be interesting. Note that people always speak about'the drippings' of Pollo
k. Apparently it is diÆ
ult to keep these high entropy imagesapart. The fa
ti
ity s
ores were 
al
ulated in the same way as in �gure 1. These worksof art typi
ally represent the period of 
rises in painting in the 20th 
entury in whi
hpainters were trying to rede�ne the 
on
eptual spa
e of their art.



6 Algorithmi
 estheti
s: the diale
ti
 of fa
ti
ityRe
ently S
hmidhuber de�ned a notion of 'interestingness' in a paper with therather ambitious title "Simple Algorithmi
 Prin
iples of Dis
overy, Subje
tivebeauty, Sele
tive Attention, Curiosity & Creativity" [28℄. Sin
e there is a relationwith the notion of fa
ti
ity it is useful to present a 
riti
al dis
ussion of theseideas. Although I am 
riti
al of S
hidhuber's theories, at least we seem to agreeon one point: algorithmi
 information theory is a useful formalism to evaluateestheti
 theories. Indeed, as we saw in the previous paragraphs, 
uriosity drivenagents tend to produ
e fa
ti
 data sets. But it seems not right to equate thenotion of 'interestingness' that 
an be de�ned for these agents with beauty.As an algorithmi
 estheti
s S
hmidhubers 
on
eption is not satisfa
tory. In thefollowing I will argue that the notion of subje
tive 
ompressibility in art is mu
hmore 
omplex than S
hmidhuber assumes. In parti
ular great works of art seemto be a ri
h sour
e of meaning be
ause of the fa
t that they trans
end ourrationality (i.e. they have high fa
ti
ity in themselves and 
an not be 
ompressed)and not be
ause they have low 
omplexity. Beauty is not an evolutionary 
on
ept.Artist do not try to 
onstru
t simple dida
ti
 obje
ts, they try to 
onstru
tobje
ts that are as ri
h in meaning as possible, i.e. they try to optimize fa
ti
ity.At �rst sight the idea of low 
omplexity art seems to �t ni
ely with somepredominant themes of western philosophy dating ba
k to an
ient Greek thought:1) the Platoni
 identi�
ation of beauty and truth and 2) the identi�
ation oftruth with simpli
ity. In various sour
es from antiquity we �nd the notion thattruth and beauty 
an be rea
hed through a pro
ess of 'idealization' removing allthe errors and faults from a 
olle
tion of similar obje
ts.9 The fa
t that thereare philosophers that defend those ideas does not imply that they des
ribe whatartists a
tually do. Figure 7 shows that the reality is mu
h more 
omplex. Artists
ertainly use 
ompression, but not in su
h a way that beauty 
an in general beidenti�ed with low-
omplexity. The following variants seem to o

ur:{ Realism: the representation is isomorphi
 to the data.{ Idealization: ideal s
hemas optimally 
ompress the des
ription of a set ofexamples with errors.{ S
hematization: optimal 
ompression under bounded 
omplexity.{ Chara
terization: optimal bounded 
ompression of an individual example
onditional to the optimal general theory.What is more, all these variants o

ur side by side throughout history. Thereis no development from simple to more 
omplex art as would be predi
ted byS
hmidhuber's theory. Espe
ially Plato's identi�
ation of truth and beauty that�ts so ni
ely with the 
on
ept of a 
uriosity driven notion of evolutionary beautyshould be regarded with suspi
ion. In the end artists were banned from Plato'sideal state. Artists do not follow rules, they break them.9 See e.g. Xenophon, Memorabilia III. This a
tually shows that the notion of data
ompression as a pro
ess of idealization that approximates some form of truth ismu
h older than O

am. MDL as a s
ienti�
 methodology has its roots in Greekthought.



Fig. 7. An illustration of the 
omplex relation between data 
ompression and idealiza-tion in art. The eigenfa
e shows that a pro
ess of data 
ompression in to a general idealform is an element of a 
ertain artisti
 tradition. At the same time extreme realism(very little 
ompression) and s
hematization (extreme 
ompression) exist. Note thatthe portrait in the upper left is from Fayoum. It shows that individual portraits alreadyo

ured in antiquity, illustrating the a-histori
al 
hara
ter of this form of realism. Theidea that beauty has a relation with low-
omplexity and that the history of art showsan evolution to obje
ts of in
reasing 
omplexity is simply denied by the fa
ts. Theautomati
ally 
onstru
ted eigen fa
e is due to Luis Ja~nez Es
alada and Miguel AngelCastellanos of the University of Madrid.The world of art and s
ien
e have di�erent rhetori
al models. An artist 
om-muni
ates dire
tly with his audien
e through his produ
ts. De gustibus non estdisputandum. A work of art either fas
inates and moves us, or it does not. Nos
ienti�
 argumentation or theoreti
al explanation 
an 
hange this, although of
ourse one 
an train ones sensitivity for the quality of art. There is a 
onsensusamongst most art 
riti
s and artists that estheti
 judgements are not verbal. Ifthe essential quality of a work of art 
ould be des
ribed adequately in languagethen the work of art would be nothing but an illustration of the text, and thusstop to be an independent work of art. One 
an say that a work of art is 'good'or 'beautiful' but this verbal judgement only serves as a re
ommendation andnot as an explanation. The beauty of a work of art 'shows' itself in the sense ofWittgenstein's Tra
tatus. A beautiful obje
t is a 
onstant sour
e of pleasure thatde�es explanantion. From this perspe
tive any attempt to formulate a s
ienti�
theory explaining what beauty is or pres
ribing what human beings should orwould �nd beautiful is doomed to fail. Books and theories by authors like Hof-stadter, Boden, S
ha, Rama
handran [25℄ and S
hmidhuber [28℄ all present uswith hypotheti
al models of the human mind and then try to de�ne beauty or




reativity in terms of these models. Su
h an ex
er
ise may give us deep insights,it does not 
hange the fa
t that beauty trans
ends the tools of s
ien
e.First of all I observe that we as agents live in a world that is not 
ompletelytransparent for us. We know that we 
an in
uen
e our environment, but thisdoes not imply that we wholly understand the pro
esses that are involved. We
an prepare food without a full understanding of the underlying biologi
al and
hemi
al pro
esses. We 
an make 
hildren without a grasp of the mira
le of life.By the same token artists 
reate art obje
ts without an intelle
tual understand-ing of the 
reative pro
ess involved. An intelle
tual 
ons
ious de
ision to makeart seldom leads to anything of interest. This is in 
on
i
t with the view of theartist as a low-
omplexity tea
her that is one step ahead of his audien
e and inline with the view that a real obje
t of art trans
ends verbal analysis.Se
ondly, art does not seem to evolve from lower to higher forms of 
om-plexity in the way S
hmidhuber's theory predi
ts. On the 
ontrary, as soon as
ertain 
on
eptual spa
es are opening up, we see that artists immediately explorethe maximal extension of the artisti
 possibilities. Homer's Iliad and Odysseyare not boring low 
omplexity books from the beginning of literature, but epi
stories that have fas
inated people for 
enturies and that fun
tion as inspira-tional examples for 
ontemporary authors. At the same time the existen
e ofthe Homer's works does not keep writers from 
oming up with new ideas. Thereis spa
e enough for new stories and plots. Painting in antiquity was 
ertainlynot of lower quality than anything that has been done sin
e the Renaissan
e.The same holds for poetry: Sappho is not a low 
omplexity pre
ursor of Shake-speare's sonnets. Obje
ts in history that were 
reated in the early history of artfrequently seem to have a deeper meaning then anything that follows.On the other hand, it 
annot be denied that some forms of art know ahistori
al development. Abstra
t painting seems partly to be a rea
tion to theinvention of photography for
ing painters to rede�ne the 
on
eptual spa
e oftheir art (See �gure 6). The development of western musi
 is one of in
reasinglyri
h harmoni
 possibilities. But then again, the invention of the 12-tone te
hniqueby S
h�onberg does not make the works of Mozart less beautiful, just as theemergen
e of abstra
t painting takes anything away from the fas
ination of apainting by Raphael. A theory that explains these phenomena is the one thatstates that artists try to maximize meaning in a histori
al 
ontext. A good workof art immediately 
onquers the full possibilities of the 
on
eptual spa
e in whi
hit emerges (See �gure 8). As su
h its full importan
e 
an not be appre
iated
ompletely by both the artist and the audien
e at the time of its 
on
eption.This theory implies that artists work in a 
on
eptual spa
e in whi
h they try tooptimize meaning (i.e. fa
ti
ity) right from the start. There is no developmentform simple to more 
omplex. However dynami
 development of art is driven bythe fa
t that any �nite 
on
eptual spa
e 
an be exhausted. If this happens, thepossibilities for artisti
 development are gone, and if the 
on
eptual spa
e is notrede�ned the art form dies.Claim. Good art maximizes 
onditional fa
ti
ity in a 
on
eptual spa
e that de-velops histori
ally.



Here is an abstra
t des
ription of su
h a pro
ess. Consider a 
ommunity ofagents with a general bounded algorithmi
 
ompression routine C and somefa
ti
 
reation routine R. The 
on
eptual spa
e for 'works of art' is the set ofbinary strings of length k. The history ht at time t of this 
ommunity 
onsistsof sequential individual proposals of works of art r1; r2:::; rt. A work of art rt+1is 
onsidered to be 'good' if:{ It is meaningful : It has optimal fa
ti
ity a

ording to equation 13 using Cas 
ompression routine.{ It is original : The normalized 
ompression distan
e NCD of rt+1 to any ofthe elements of the history r1; r2:::; rt using C as 
ompression routine is atleast 
 where 0� 
 � 1.It is 
lear that su
h a 
ombination of demands leads to an interesting non-lineardynami
s within this history. Consider the beginning of the pro
ess. The �rstagent makes a proposal r1 and su

eeds in maximizing the fa
ti
ity of this obje
t.This �rst obje
t of art rt 
onsequently stru
tures the rest of the development.Any new obje
t has to stay away from r1. As soon as a proposed string has a lownormalized 
ompression distan
e to r1 it is 
onsidered to be plagiarism. A se
ondobje
t r2 again 
onquers part of the 
on
eptual spa
e away from the region takenby r1. If the pro
ess 
ontinues after some time it be
ome impossible to sele
t
ompletely original obje
ts with high fa
ti
ity. At this moment the produ
tion oforiginal meaningful obje
ts of art be
omes impossible. Supposing that the agentsstill have an interest in the 
reation of art, a possible solution is the expansionof the 
on
eptual spa
e, i.e. in
rease k to k0. Note however that if this happensit remains still impossible to de�ne new meaningful obje
ts of a length < k.7 Con
lusions and further workIn this paper I studied the notion of meaningful information. I showed that thisnotion is intri
ately 
onne
ted with the idea of learning by 
ompression. I intro-du
ed the 
on
ept of fa
ti
ity as a �rst approximation of meaningful information.I studied data 
ompression in the 
ontext of thermodynami
s and I showed thatunder adequate measurement 
onditions the randomness de�
ien
y of a data setis asso
iated with the free energy in the data set.I also studied two-part 
ode optimization. Here I analyzed 
ompression algo-rithms that separate a data set in a stru
tural and an ad ho
 part. In this waythe system is redu
ed to a typi
al element of a model and thus the model de-s
ription has a high probability to produ
e an adequate predi
tion of any futuredevelopment of the system.Note that systems in thermodynami
al equilibrium have no signi�
ant de-velopment in time. Redu
ing the des
ription of these systems to random twopart-
odes 
ompresses the des
ription of the system to those elements that aretime invariant. That is why su
h des
riptions 
an be used to predi
t the futureof the system.



Fig. 8. Left, a pi
ture of a regular s
hemati
 feminine fa
e due to S
hmidhuber [26℄.In the middle, a detail of a 
opy of the Mona Lisa by Leonardo's untalented proteg�eSalai. On the right a s
heme for a 
hilds head based on an arrangement of four 
ir
lesin a square due to Fioletti (1608). The last image shows that 
onstru
tion of fa
esa

ording to simple geometri
al s
hemes was an element of artisti
al training in theRenaissan
e. It is 
lear from the plain look of Salai's painting, whi
h 
onveys nothingof the fas
ination of the original, that great works of art are diÆ
ult to 
opy, i.e. theyhave a meaning that 
an not be 
aptured by simple geometri
al s
hemas. This supportsthe view that great works of art optimize fa
ti
ity and 
an not be 
ompressed in tolow-
omplexity data sets.There are a number of ways in whi
h this resear
h 
ould be expanded. Firstlythere is the issue of developing good 
omplexity estimates for spe
i�
 problem
lasses, so that MDL approa
hes 
an be used. I have given initial reports for DFAindu
tion but mu
h improvement is possible [1℄. Another dire
tion of resear
his a deeper analysis of the distributions that I suppose are essential for our
apabilities to analyze the world around us. Another interesting exer
ise 
ouldbe a further embedding of these insights in the history of philosophy.Interestingly the 
laims of the role of fa
ti
ity in art I have defended hereseem to be open for empiri
al testing (and thus to plain Popperian falsi�
ation).This is due to the fa
t that Cilibrasi's Normal Compression Distan
e seemsto measure 
ognitive relevant aspe
ts of musi
 represented as midi �les. Theneed felt by 
omposers to stre
h the limits of 
onsonan
y and 
ounterpoint at a
ertain point in history, should be measurable as an impossibility to 
ome up withinteresting original melodies given enough Midi representations of melodies up tothat moment. Se
ondly, given the 
urrent status of fMRI te
hnology it is possibleto present melodies with various variantions in 
omplexity and fa
ti
ity and tostudy invariants in representation in the brain. Normal 
ompression distan
eseems not to be able to measure 
ognitive relevant aspe
t of images but at thismoment 
omparable fMRI and PET-s
an studies are done measuring the brain'srea
tion to images with various Weibull and non-Weibull distributions that havea relation with fa
ti
ity.[15℄ Even if the 
reation of real art will remain a mira
lefor ever we are bound to get a mu
h deeper insight in the 'innate' probabilitydistributions that our brain uses to analyse and predi
t the world around us.
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